References.

  • Ohira K., Research and development work on liquid hydrogen technologies in Japan’s WE-NET project. Proc 19th Int Cryo Eng Conf (2003), 557-560.
  • Ohira K., A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project. Adv Cryo Eng, Vol. 49A (2004), 27-34.
  • Ohira K., Development of a high-efficiency hydrogen energy system using slush hydrogen. OHM, Vol. 99 (2012), No. 2, 2-3. (in Japanese)
  • Ohira K., Flow and heat transfer phenomena of cryogenic solid-liquid two phase slush fluid. Technology of oil and pneumatic pressures, Vol. 52 (2013), No. 2, 11-17. (in Japanese)
  • Ohira K., High-efficiency hydrogen energy system using slush hydrogen. Compendium of Hydrogen Utilization Technology, Vol. 4 (NTS Inc., 2014), 301-312. ISBN: 978-4-86469-082-9 (in Japanese)
  • Ohira K., Slush hydrogen production, storage, and transportation. Compendium of Hydrogen Energy, Vol. 2 (Woodhead Publishing, Elsevier Ltd., 2015), 53-90. ISBN: 978-1-78242-362-1
  • Ohira K., Development of a high-efficiency hydrogen storage system using liquid and slush hydrogen. Chemical Engineering, Vol. 62 (2017), No. 4, 19-26. (in Japanese)
  • Ohira K. et al., An experimental investigation of film-condensation heat transfer of hydrogen in a vertical tube. Adv Cryo Eng, Vol. 35A (1990), 421-428.
  • Ohira K., Laminar film condensation heat transfer of hydrogen and nitrogen inside a vertical tube. JSME J, Ser. B, Vol. 66 (2000), No. 641, 174-181. (in Japanese)
  • Ohira K., Laminar film condensation heat transfer of hydrogen and nitrogen inside a vertical tube. Heat Transfer-Asian Research, Vol. 30 (2001), No.7, 542-560.
  • Ohira K. et al., The characteristics of magnetic refrigeration operating at the temperature of 20 K. Proc 16th Int Cryo Eng Conf (1996), 403-406.
  • Ohira K. et al., Experimental study on magnetic refrigeration for liquefaction of hydrogen. Adv Cryo Eng, Vol. 45 (2000), 1747-1754.
    Ohira K. et al., Development of magnetic refrigeration at temperature of hydrogen liquefaction. Mitsubishi Heavy Industries Technical Report, Vol. 36 (1999-11), No. 6, 324-327. (in Japanese)
    Ohira K., Hydrogen liquefaction technology by magnetic refrigeration. Vol. 3 (NTS Inc., 2007), 453-461. ISBN: 978-4-86043-146-4. (in Japanese)
  • Ohira K. et al., An experimental investigation of production and density measurement of slush hydrogen. Cryogenics, Vol. 34 (1994), 397-400.
  • Ohira K., Study of production technology for slush hydrogen. Adv Cryo Eng, Vol. 49A (2004), 56-63.
  • Ohira K. et al., Development of a high-accuracy capacitance-type densimeter for slush hydrogen. JSME Int J, Ser. B, Vol. 43 (2000), No.2, 162-170.
  • Ohira K. et al., Development of a microwave-type densimeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 615-620.
  • Ohira K. et al., Study on the development of a capacitance-type flowmeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 607-613.
  • Ohira K. et al., Development of a waveguide-type flowmeter using a microwave method for slush hydrogen. JSME Int J, Ser. B, Vol. 48 (2005), No.1, 114-121.
  • Ohira K., Development of density and mass flow rate measurement technologies for slush hydrogen. Cryogenics, Vol. 44 (2004), 59-68.
  • Ohira K., Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe. Cryogenics, Vol. 51 (2011), 389-396.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics, Vol. 51 (2011), 563-575.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular pipe flow. Proc 24th IIR Int Cong Refrig (2015), ID: 771.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 681-686.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular and circular pipe flows. Cryogenics, Vol. 81 (2017), 60-75.
  • Ohira K. et al., Numerical study of slush nitrogen flow in a horizontal pipe. Proc 23rd Int Cryo Eng Conf (2011), 275-280.
  • Ohira K. et al., Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D). Cryogenics, Vol. 52 (2012), 428-440.
  • Ohira K. et al., Numerical study of cryogenic slush flow in a horizontal square pipe for a high-efficiency hydrogen energy system (SLUSH-3D). Proc 24th Int Cryo Eng Conf (2013), 105-110. (invited lecture)
  • Ohira K. et al., Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes. Cryogenics, Vol. 52 (2012), 771-783.
  • Nozawa M. et al., Flow characteristics of slush nitrogen in various types of pipe. Proc 22nd Int Cryo Eng Conf (2009), 255-260.
  • Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. JSME J, Ser. B, Vol. 65 (1999), No. 640, 4055-4062. (in Japanese)
  • Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transfer-Asian Research, Vol. 32 (2003), No. 1, 13-28.
  • Sindt C. F. et al., Slush hydrogen flow characteristics and solid fraction upgrading. Adv Cryo Eng, Vol. 15 (1970), 382-390.
  • Orr, Jr. C. et al., Heat transfer properties of liquid-solid suspensions. Chem Eng Prog Symp, Ser. 50 (1954), 29-45.
  • Hawthorne R. C. et al., Fluid expansion theory computes flow in corrugated hose. Prod Eng, Vol. 34 (1963), 98-100.
  • Hosono T., Numerical study of slush flow characteristics in a corrugated pipe and non-circular pipes. Master’s thesis (2013), Tohoku Univ. (in Japanese).
  • Iwama Y., Numerical study of slush flow characteristics in a converging-diverging pipe and a grooved rectangular pipe. Master’s thesis (2014), Tohoku Univ. (in Japanese).